![]() 晶圓級分光計
专利摘要:
本發明揭示一種用於量測光學輻射之特性之感測器裝置,該感測器裝置具有一基板及位於該基板內一或多個空間上分離之位置處之一低輪廓光譜選擇性偵測系統。該光譜選擇性偵測系統包含以光學方式耦合至一對應光學偵測器陣列之一大體層疊波長選擇器陣列。強調,提供本摘要以符合需要將允許一搜尋者或其他讀者快速斷定技術性發明之標的物之一摘要的規則。提交本摘要係基於以下理解:其將不用於解釋或限定申請專利範圍之範疇或含義。 公开号:TW201306156A 申请号:TW101121651 申请日:2012-06-15 公开日:2013-02-01 发明作者:Earl Jensen;Mei Sun;Kevin O'brien 申请人:Kla Tencor Corp; IPC主号:G01J3-00
专利说明:
晶圓級分光計 本發明之實施例係關於一種用於量測一處理環境內之光譜發射目的之具有(一或多個)嵌入式分光計之度量晶圓。 本申請案係2012年6月17日申請之美國臨時申請案第61/498,500號之非臨時申請,該案之全部內容以引用的方式併入本文中。 諸如彼等用於生產電子器件、平板顯示器及微影遮罩之製造製程,及用於製作半導體器件之製程通常需要一適合工件經受涉及光學輻射之一離散製程操作序列。此等製程中之諸多者對製程條件極敏感且較佳地係在其內建立有極特定條件之個別製程室內實施,該等製程室通常稱為製程工具。此等製程工具之現代製造設施通常使用機器人傳送機構作為生產製程之總體自動化之部分。 需要準確地及可再現地建立並維持製程室內之精確條件之能力以成功地生產各種類型之產品。特別重要的產品之實例係某些目前技術水平的電子器件,諸如半導體器件、平板顯示器器件及微影遮罩。為了達成商業成功所必需之高器件良率及效能,在某些情形下使用經設計以量測特定物理參數之感測器不斷地監測並控制一製程室內之條件。通常,將此等控制感測器建立至製程工具中以便量測所關注之參數,諸如製程工具內一特定位置處之光學輻射。 對於諸如使用一輝光放電之工件之電漿處理之應用而言,通常可用於監測電漿製程條件之技術可遭受各種問題。一典型問題係標準方法係侵入性的,此乃因其需要對製程室或製程操作條件之修改。標準方法之另一問題係標準方法通常針對製程之一區僅提供全局量測或平均量測。一般而言,目前可用之監測技術及裝置不能容易地提供對用於處理一基板之光學輻射參數之非侵入性、空間及/或時間解析之量測。 本發明之實施例係在此背景下產生。 一種用於量測光學輻射之特性之感測器裝置,其包括:a)一基板;b)一低輪廓光譜選擇性偵測系統,其位於該基板內一或多個空間上分離之位置處,其中該光譜選擇性偵測系統包含以光學方式耦合至一對應光學偵測器陣列之一大體層疊光學波長選擇器陣列。 當閱讀以下詳細說明且當參考附圖時,本發明之目的及優點將變得顯而易見。 在以下[實施方式]中,將參考形成本文一部分且其中以圖解說明方式展示其中可實施本發明之特定實施例之附圖。就此而言,諸如「頂部」、「底部」、「前面」、「背面」、「前沿」、「尾沿」等方向性術語係參考所闡述之各圖之定向而使用。由於可以若干不同定向來定位本發明之實施例之組件,因此出於圖解說明之目的而絕不以限定方式使用方向性術語。應理解,可在不背離本發明範疇之情形下利用其他實施例並作出結構或邏輯改變。因此,不應將以下詳細說明視為具有限定意義,且本發明之範疇由隨附申請專利範圍定義。 本發明係關於用於量測光學輻射之特性之裝置。下文將主要在處理諸如矽晶圓之半導體晶圓之背景下論述本發明之某些實施例之操作。下文將主要在量測並收集光學輻射資料,特定而言涉及光學輻射之製程(諸如處理用於製作電子器件之工件所使用之製程)之光譜發射特性之背景下論述本發明之實施例及本發明之實施例之操作。本發明之實施例適合之涉及光學輻射之某些製程之實例係電漿蝕刻、輝光放電濺鍍、電漿增強化學汽相沈積、電漿退火、電漿剝除、光化學沈積、光化學蝕刻、光學固化、光學顯影及光學退火。 此處將涉及光學輻射之一製程定義為意指以下一製程:對於其而言光學輻射用作執行一製程之部分或光學輻射由該製程產生。此外,光學輻射可對該製程之結果具有一影響或光學輻射可係該製程之狀態或效能之一指示。然而應理解,根據本發明之實施例可用於涉及量測一環境中之光學輻射之實質上任何應用。在各圖之以下說明中,當標示各圖所共用之實質上相同之元件或步驟時已使用相同元件符號。 圖1A及圖1C圖解說明根據本發明之一實施例之一感測器裝置100之一剖面圖及一俯視圖。感測器裝置100包括一基板101。具有一光學元件105之一蓋103可然後附接至基板101,其組合形成一殼體。可使用適合用於彼應用之任何黏合劑材料連結基板101與蓋103。一低輪廓波長選擇性偵測系統110及(視情況)量測電子裝置119位於由基板101及蓋103形成之殼體內。圖1C展示低輪廓波長選擇性偵測系統110、光學元件105及量測電子裝置119,使用虛線來指示低輪廓波長選擇性偵測系統110及量測電子裝置119安置於基板蓋103下方。 如此處所圖解說明,波長選擇性偵測系統110及量測電子裝置119位於基板101內。另一選擇係,波長選擇性偵測系統110及量測電子裝置119可位於蓋103內或蓋103與基板101兩者內。藉由蓋103遮蔽波長選擇性偵測系統110及量測電子裝置119以免曝露至一工件處理工具之處理條件。應注意,若該工件之處理條件將不實質上干擾波長選擇性偵測系統110及量測電子裝置119起作用,則可省略蓋103。 感測器裝置100經組態以量測在涉及光學輻射之一製程期間由一工件經歷之光譜發射特性。以舉例方式而非以限定方式,將在一電漿製程之背景下論述感測器裝置100之操作。然而,重要的係應注意感測器裝置100可用於涉及光學輻射之任何條件中。感測器裝置100曝露至一工件處理工具(未展示)內之電漿117。自電漿117發出之光學輻射115指向感測器裝置100。 光學元件105可經組態以選擇性地聚集蓋103之頂表面處光學元件105附近之光學輻射115之聚積。換言之,光學元件105可經組態以捕獲位於蓋103表面附近之光學輻射115。此允許由感測器裝置100確定之光學輻射115之光譜發射特性將與監測及最佳化工件處理工具條件最相關之特定區域(例如,蓋表面)作為目標。 以舉例方式而非以限定方式,光學元件105可係由藍寶石或石英或對於期望範圍中之光學輻射係實質上透明之任何其他材料構成之一窗。對於本發明之較佳實施例而言,光學元件105可對於具有自100 nm至2 μm(亦即,遠紫外線至近紅外線)之範圍之波長及其中所包含之所有波長及波長範圍之光學輻射係透明的。光學元件105亦可包含經組態以選擇性地聚集源自基板蓋103之頂表面處之光學輻射115之聚積的一或多個光學元件,諸如透鏡。另外,光學元件105可包含一反射光束導引元件或窗。 儘管圖1A中所圖解說明之感測器裝置100僅展示形成於基板蓋103內之一單個光學元件105,但可在基板蓋103內之各種位置處形成多個光學元件以便促進對複數個不同位置處之光學輻射光譜發射特性之空間監測。 可將由光學元件105捕獲之光學輻射115直接傳輸至低輪廓波長選擇性偵測系統110。低輪廓波長選擇性偵測系統110可經組態以確定光學輻射115之光譜發射特性。特定而言,低輪廓波長選擇性偵測系統110可經組態以分辨對應於所捕獲光學輻射115內的一或多種所關注化學物質之一或多個發射頻帶。如本文所用之術語低輪廓波長選擇性偵測系統係指一器件,該器件能夠量測電磁譜之一指定部分上之光學輻射之各種性質(例如,光譜發射特性),同時滿足在一似晶圓基板內實施此一器件所固有之大小約束。波長選擇性偵測系統110位於由蓋103及基板101形成之殼體內。藉由基板蓋103遮蔽波長選擇性偵測系統110以免受可損害對所捕獲光學輻射115之光譜發射特性之確定之任何電磁(EM)雜訊。亦藉由蓋103遮蔽波長選擇性偵測系統110以免受可干擾量測電子裝置之任何RF雜訊。應注意,若EM及RF雜訊將不實質上干擾波長選擇性偵測系統110起作用,則可省略蓋。 以舉例方式而非以限定方式,低輪廓波長選擇性偵測系統110可大體包含一或多個光學波長選擇器109(例如,光學帶通濾光片),該等光學波長選擇器經由一孔徑限制器件113以光學方式耦合至一對應偵測器陣列111(例如,一光電二極體陣列)。波長選擇器109僅將所關注光學輻射115之部分傳輸至偵測器陣列111且可藉由使用多個不同波長選擇器推測光學輻射115之一組特性。在某些實施方案中,可將不透明材料置於毗鄰波長選擇器109之間以避免未經過濾之輻射至偵測器陣列111之對應元件之不期望耦合。孔徑限制器件113可用於維持波長選擇器109之光學效能。 孔徑限制器件113之功能部分地取決於其相對於波長選擇器109及偵測器陣列111之位置。舉例而言,孔徑限制器件113可置於波長選擇器109下面,以使得孔徑限制器件位於波長選擇器109與偵測器陣列111之間,如圖1A中所示。在此組態中,若例如波長選擇器109使用光子晶體實施,則孔徑限制器件113可用於防止離開波長選擇器109之寬角度輻射到達偵測器陣列111。另一選擇係,孔徑限制器件113可位於波長選擇器109之頂部,以使得波長選擇器109在孔徑限制器件與光電偵測器陣列111之間。若波長選擇器109在呈一帶通濾光片陣列之形式,則此可係用於維持波長選擇器109之光學效能之一有用組態。若例如波長選擇器109使用光子晶體實施,則此組態亦可用於界定輻射115之一收集錐體。 以舉例方式而非以限定方式,一薄層帶孔黑玻璃可用作孔徑限制光學器件113。以舉例方式,孔之直徑相對於其深度之縱橫比可大約為1:10(例如,具有延伸穿過玻璃層之20微米直徑孔之一200微米厚玻璃層)。為了使偵測器陣列111充分偵測光學輻射115,孔徑限制器件113之表面上之孔之面積可大約係總面積之50%或以上。孔徑限制器件113可視情況製作為偵測器陣列111之一組成部分或製作為波長選擇器109之一組成部分。孔徑限制器件113亦可置於波長選擇器109上方,以使得光學輻射115在到達波長選擇器109之前通過孔徑限制器件113。另外,在如圖1B中所示之一替代低輪廓波長選擇性偵測系統110'中,可將一額外孔徑限制器件113'置於波長選擇器109上方,以使得光學輻射115在到達波長選擇器109之前通過額外孔徑限制器件113'且在自波長選擇器109射出之後然後通過一第二孔徑限制器件113。在某些實施方案中,光學元件105可經圖案化(例如,圖案化有具有合適直徑、密度及縱橫比之孔)以充當額外孔徑限制器件113'。 針對較短波長,可將一光學轉換材料112間置於偵測器陣列111與孔徑限制器件113之間以幫助獲得更高轉換效率。以舉例方式而非以限定方式,該材料可係一磷光體、螢光材料或一發冷光材料,其目的在於幫助將可用短波長能量之一部分全部或部分地轉換為可由偵測器陣列111偵測到之較長波長。 量測電子裝置119可連接至低輪廓波長選擇性偵測系統110以便允許對由波長選擇性偵測系統110產生之電信號之分析(例如,將強度映射轉換為發射光譜)。彼等熟習此項技術者應知曉,存在適合與感測器裝置100一同使用之眾多市場上可購得控制器。以舉例方式而非以限定方式,量測電子裝置119可包含用於分析由波長選擇性偵測系統110產生之電信號之電子器件,諸如微處理器。此外,量測電子裝置119可包含用於儲存資料及指令之電腦可讀記憶體。更進一步,量測電子裝置119可經組態以用於使用諸如無線通信之方法將資料及指令傳輸至一第二位置。 圖2A及圖2B圖解說明根據本發明之一替代實施例之一感測器裝置200之一剖面圖及一俯視圖。感測器裝置200包括一基板201。具有一光學元件205之一蓋203可然後附接至基板201,其組合形成一殼體。可使用適合於彼應用之任何黏合劑材料連結基板201與蓋203。一低輪廓波長選擇性偵測系統210及(視情況)量測電子裝置219位於由基板201及蓋203形成之殼體內。感測器裝置200亦包含位於由基板201及蓋203形成之殼體內之一光學波導207。圖2B展示波導207、低輪廓波長選擇性偵測系統210、光學元件205及量測電子裝置219,使用虛線來指示其安置於基板蓋203下方。應注意,儘管將光學元件205及波導207展示為單獨元件,但彼等熟習此項技術者將認識到其可係同一元件或整合為一共同結構。 如此處所圖解說明,波導207、波長選擇性偵測系統210及量測電子裝置219位於基板201內。另一選擇係,波導207、波長選擇性偵測系統210及量測電子裝置219可位於蓋203內或蓋203與基板201兩者內。藉由蓋203遮蔽波導207、波長選擇性偵測系統210及量測電子裝置219以免曝露至一工件處理工具之處理條件。應注意,若工件之處理條件將不實質上干擾波長選擇性偵測系統210及量測電子裝置219起作用,則可省略蓋。 感測器裝置200可經組態以量測在涉及光學輻射之一製程期間由一工件經歷之光譜發射特性。舉例而言,感測器裝置201可在一工件處理工具(未展示)內曝露至電漿217。自電漿217發出之光學輻射215可指向感測器裝置200。 光學元件205可經組態以選擇性地收集源自蓋203之頂表面處在極接近於光學元件205之處內之光學輻射215。換言之,光學元件205可經組態以捕獲位於蓋203附近之光學輻射215。此允許由感測器裝置200確定之光學輻射215之光譜發射特性將與監測及最佳化工件處理工具條件最相關之一區域(亦即,蓋表面)作為目標。 以舉例方式而非以限定方式,光學元件205可係由藍寶石或石英或對於期望範圍中之光學輻射係實質上透明之任何其他材料構成之一窗。對於本發明之某些實施例而言,窗205可對於具有自100 nm至2 μm(亦即,遠紫外線至近紅外線)之範圍之波長及其中所包含之所有波長之光學輻射係透明的。光學元件205亦可包含經組態以選擇性地聚集源自基板蓋203之頂表面處之光學輻射215之聚積的一或多個光學元件,諸如透鏡。 儘管圖2A中所圖解說明之感測器裝置200僅展示形成於蓋203內之一單個光學元件205,但可在蓋203內之各種位置處形成多個光學元件以便促進對複數個不同位置處之光學輻射光譜發射特性之空間監測。 可經由光學波導207將由光學元件205捕獲之光學輻射215傳輸至波長選擇性偵測系統,而非如上文關於圖1A及圖1B所述直接將其傳輸至波長選擇性偵測系統。光學波導207可位於由蓋203及基板201形成之殼體內。光學波導207可經組態以接收聚積於光學元件205處之光學輻射215且沿平行於蓋203之平面之方向將其傳輸。可藉由蓋203遮蔽光學波導207以免受處理環境。亦可藉由蓋203遮蔽由光學波導207傳輸之光學輻射215以免受光學雜訊。因此,由波長選擇性偵測系統210量測之光學輻射215可與由呈一窗之形式之一光學元件205捕獲之光學輻射215實質上相同。 光學波導207可係一光子晶體結構透明基板。另一選擇係,光學波導207可係一光纖或光纖束。在此一實施例中,光學元件205可附接至光子晶體結構或者光纖或光纖束之一端。另一選擇係,可藉由一介電板波導或適合於此應用之任何其他波導來實施光學波導207。以舉例方式而非以限定方式,波導207可係介於1微米與500微米之間厚。 以舉例方式而非以限定方式,可使用一或多個窄帶通濾光片偵測系統來實施波長選擇性偵測系統210。此一基於濾光片之偵測系統可包括一大體層疊光學波長選擇器陣列209(例如,光學帶通濾光片),該等光學波長選擇器經由一光學傳輸孔徑限制器件213(其可呈一板之形式)以光學方式耦合至一對應光電二極體陣列211。波長選擇器209僅將所關注光學輻射215之部分傳輸至偵測器陣列211且可藉由使用多個不同波長選擇器推測光215之一組特性。孔徑限制器件213可用於維持自波導207與波長選擇器209之組合產生之波長分辨波導之光學效能。 以舉例方式而非以限定方式,一薄層帶孔黑玻璃可用作孔徑限制器件213。以舉例方式,孔之直徑相對於其深度之縱橫比可大約為1:10(例如,具有延伸穿過玻璃層之20微米直徑孔之一200微米厚玻璃層)。為了使偵測器陣列211充分偵測光學輻射215,孔徑限制器件之表面上之孔之面積可大約係總面積之50%或以上。孔徑限制器件213可視情況製作為感測器陣列211之一組成部分。孔徑限制器件213可視情況製作為感測器陣列211之一組成部分。 針對較短波長,可將一光學轉換材料212間置於偵測器陣列211與孔徑限制器件213之間以幫助獲得更高轉換效率。以舉例方式而非以限定方式,該材料可係一磷光體、發光體或一螢光材料,其目的在於幫助將可用短波長能量之一部分全部或部分地轉換為可由偵測器陣列211偵測到之較長波長。 低輪廓波長選擇性偵測系統210可經組態以確定所傳輸之光學輻射215之光譜發射特性。特定而言,低輪廓波長選擇性偵測系統210可經組態以分辨對應於所捕獲光學輻射215內之一或多種所關注化學物質之一或多個發射頻帶。波長選擇性偵測系統210可位於由蓋203及基板201形成之殼體內。藉由基板蓋203遮蔽波長選擇性偵測系統210以免受可損害對所捕獲光學輻射215之光譜發射特性之確定之任何電磁(EM)雜訊。亦遮蔽波長選擇性偵測系統210以免受可干擾量測電子裝置之任何RF雜訊。應注意,若EM及RF雜訊將不實質上干擾波長選擇性偵測系統210起作用,則可省略蓋。 以舉例方式而非以限定方式,低輪廓波長選擇性偵測系統210中之波長選擇器209可實施為奈米製作於一聚合物膜、半導體材料或玻璃板中之一光子晶體圖案(例如,規則部署之孔或空隙之一圖案)陣列,該等光子晶體圖案經組態以將既定窄波長範圍之光選擇性地耦合至一對應偵測器陣列211且如上文關於圖1A及圖1B所述的那樣表現。另一選擇係,波長選擇器209可實施為薄膜干涉濾光片、有色玻璃濾光片或微諧振器。波長選擇器(例如,薄膜干涉濾光片或微諧振器等)可與偵測器陣列211整體形成。以舉例方式而非以限定方式,在微諧振器之情形下,偵測器陣列211可與微諧振器以一共同結構整體形成。 如所圖解說明,波長選擇性偵測系統210可位於光學波導207下方。然而,波長選擇性偵測系統210替代地位於由蓋203及基板201形成之殼體內之任何位置中,只要其經組態以分辨對應於所捕獲光學輻射內之一或多種所關注化學物質之一或多個發射頻帶即可。量測電子裝置219連接至低輪廓波長選擇性偵測系統210以便允許對由波長選擇性偵測系統210產生之電信號之分析(例如,將強度映射轉換為發射光譜)。彼等熟習此項技術者應知曉,存在適合供與感測器裝置200一同使用之眾多市場上可購得之控制器。以舉例方式而非以限定方式,量測電子裝置119可包含用於分析由波長選擇性偵測系統210產生之電信號之電子器件,諸如微處理器。此外,量測電子裝置219可包含用於儲存資料及指令之電腦可讀記憶體。更進一步,量測電子裝置219可經組態以用於使用諸如無線通信之方法將資料及指令傳輸至一第二位置。 當感測器裝置經組態以具有類似於工件之彼等性質之性質時本發明之某些實施例適合用於獲得有用資訊。對於半導體晶圓處理應用而言,此意味著感測器裝置100、200可具有製程所用於之半導體晶圓之某些性質。特定而言,對於本發明之大多較佳實施例而言,感測器裝置可模擬製程所用於之工件之電、機械、熱及化學性質。 以舉例方式而非以限定方式,感測器裝置100、200可經組態以使得感測器裝置100、200之尺寸及形狀近似用於製程中之工件之尺寸。對於半導體晶圓處理應用而言,此意味著感測器裝置100、200可具有一半導體晶圓之形狀及近似尺寸。舉例而言,當感測器裝置用於半導體晶圓製程時,感測器裝置100、200可為實質上圓形且具有大約等於半導體晶圓之直徑之一直徑。標準半導體晶圓直徑包含,但不限於,例如,150 mm,200 mm,300 mm及450 mm。此外,感測器裝置之材料,例如,基板101、201及/或蓋103、203可與用於標準半導體晶圓之材料相同。舉例而言,若標準晶圓由矽製成,則基板及蓋亦可由矽製成。 對於涉及平板顯示器處理之應用而言,除感測器裝置之厚度與平板顯示器基板之厚度之一可能不同外,感測器裝置100、200可具有與一平板顯示器基板約相同之尺寸且由與其相同之材料製成。類似地,對於涉及光微影遮罩處理之應用而言,可能除感測器裝置100、200之厚度可不同於光微影遮罩基板之厚度外,感測器裝置100、200可具有與一光微影遮罩基板約相同之尺寸且由與其相同之材料製成。 在用於半導體晶圓製程之本發明較佳實施例中,感測器裝置100、200具有使得感測器裝置100、200可以與裝載及卸載半導體晶圓或其他工件實質上相同之方式裝載至製程工具及自製程工具卸載之尺寸。由於大多現代半導體處理設施及設備使用機器人系統來裝載及卸載晶圓,此意味著感測器裝置100、200較佳地經組態以使得其可被用於裝載及卸載半導體晶圓以供處理之機器人系統適應。換言之,感測器裝置100、200之較佳實施例經組態以便在實際處理條件下且實質上不對處理設備進行修改或擾動之情形下確定光譜發射特性。 涉及相對小之基板(例如,與半導體晶圓、平板顯示器基板及光微影遮罩約相同大小之基板)之應用,上述實施例較佳地使用具有一適合之小大小之量測電子裝置119、219。對於此等應用而言,量測電子裝置119、219可包含一微處理器及足夠之附件組件以支援用於諸如施加電信號、量測電信號、處理資料、儲存資料及傳輸資訊之任務之微處理器操作。 圖3提供圖解說明一低輪廓光子晶體波長選擇性偵測系統300之操作之一個三維示意圖。光子晶體波長選擇性偵測系統300可實施為奈米製作於一波導基底材料303(例如,一玻璃基板上之一聚合物膜或不同折射率之一膜)中之一光子晶體圖案305(例如,空隙、孔或不同折射率材料之包含物)陣列以形成一光子晶體結構。在圖解說明中,將光學輻射301引入至透明基底材料303之邊緣中。具有四個不同晶格常數之光子晶體305圖案化於基底材料303上方之層中。此等圖案中之每一者輸出耦合一不同頻帶之波長,由箭頭307圖解說明。儘管圖3中所圖解說明之實例僅提供四個不同晶體圖案,重要的係應注意任何數目個不同光子晶體圖案可用於幫助確定傳入光學輻射之光譜發射特性。可藉由使用更多光子晶體圖案來改良所回收發射光譜之準確性。 圖4係圖解說明根據本發明之一替代實施例之一感測器裝置400之一俯視示意圖。除蓋403及基板(未展示)組態為一矩形形式而非圖1C及圖2B中所示之圓形形式外,圖4中所示之感測器裝置400可與圖2A及圖2B中所示之感測器裝置200實質上相同。感測器裝置400之一矩形或一方形形式將對諸如彼等用於處理矩形或方形基板(諸如用於製作平板顯示器之基板及用於製作微影遮罩之基板)之應用有用。 圖5A係根據本發明之一替代實施例之一感測器裝置500之一剖面圖。感測器裝置500包括一基板501。具有一光學元件505之一蓋503可然後附接至基板501,其組合形成一殼體。可使用適用於彼應用之任何黏合劑材料連結基板501與蓋503。一低輪廓波長選擇性偵測系統510及(視情況)量測電子裝置519位於由基板501及蓋503形成之殼體內。感測器裝置500亦包含位於由基板501及蓋503形成之殼體內之一額外光學波導507。 如此處所圖解說明,波導507、波長選擇性偵測系統510及量測電子裝置519位於基板501內。另一選擇係,波導507、波長選擇性偵測系統510及量測電子裝置519可位於蓋503內或蓋503與基板501兩者內。藉由蓋503遮蔽波導507、波長選擇性偵測系統510及量測電子裝置519以免曝露至一工件處理工具之處理條件。應注意,若該工件之處理條件將不實質上干擾波長選擇性偵測系統510及量測電子裝置519起作用,則可省略蓋。 感測器裝置500經組態以量測在涉及光學輻射之一製程期間由一工件經歷之光譜發射特性。感測器裝置500在一工件處理工具(未展示)內曝露至電漿517。自電漿517發出之光學輻射515指向感測器裝置500。 光學元件505可經組態以選擇性地收集源自蓋503之頂表面處之在極接近於光學元件505之處內之光學輻射515。換言之,光學元件505可經組態以捕獲位於蓋503附近之光學輻射515。此允許由感測器裝置500確定之光學輻射515之光譜發射特性將與監測及最佳化工件處理工具條件最相關之一區域(亦即,蓋表面)作為目標。 光學元件505可由藍寶石或石英或對於期望範圍中之光學輻射係實質上透明之任何其他材料構成。對於本發明之較佳實施例而言,光學元件505可係對於具有自100 nm至2 μm(亦即,遠紫外線至近紅外線)之範圍之波長及其中所包含之所有波長之光學輻射係透明的一窗。光學元件505亦可包含經組態以選擇性地聚集源自基板蓋503頂表面處之光學輻射515之聚積之一或多個聚焦器件,諸如透鏡。 儘管圖5A中所圖解說明之感測器裝置500僅展示形成於蓋503內之一單個光學元件505,但可在蓋503內之各種位置處形成多個光學元件以便促進對複數個不同位置處之光學輻射光譜發射特性之空間監測。 然後經由一光學波導507將由光學元件505捕獲之光學輻射515傳輸至波長選擇性偵測系統,而非如上文關於圖1A及圖1B所述直接將其傳輸至波長選擇性偵測系統。光學波導507位於由蓋503及基板501形成之殼體內。波導507經組態以接收聚積於光學元件505處之光學輻射515且沿平行於蓋503之平面之一方向將其傳輸。藉由蓋503遮蔽光學波導507以免受處理環境。亦藉由蓋503遮蔽由光學波導507傳輸之光學輻射515以免受光學雜訊。因此,由波長選擇性偵測系統510量測之光學輻射515與由光學元件(例如,窗)505捕獲之光學輻射515實質上相同。 光學波導507可係光子晶體結構之透明基板或者一光纖或光纖束。在彼實施例中,光學元件505可附接至光子晶體結構或光纖或光纖束之一端。另一選擇係,可藉由一介電板波導或適合於此應用之任何其他波導來實施光學波導507。在某些實施例中,波導507可視情況在其一端上具有一反射塗層521以將光學輻射515反射回,該光學輻射515自光學元件505一路穿過波導507到達端。 應注意,圖5A中所示之光學波導507在一端處彎曲且經由接近該彎曲端處之一光學元件505接收輻射515。然而,本發明之實施例並不限於此一組態。在圖5C中所示之一替代實例中,波導507可在兩端處彎曲且可經由接近兩端處之光學元件接收輻射515。 以舉例方式而非以限定方式,可使用一或多個光學波長選擇器(例如,光子晶體)509及偵測器來實施波長選擇性偵測系統510。光學波長選擇器509可通常實施為一大體層疊波長選擇器陣列,其中該陣列中之每一波長選擇器509經由一孔徑限制器件513以光學方式耦合至一偵測器陣列511中之一對應光學偵測器(例如,光電二極體)。波長選擇器509僅將所關注光學輻射515之部分傳輸至偵測器陣列511且可藉由使用多個不同波長選擇器推測光515之一組特性。一孔徑限制器件513可用於維持由光學波導507及波長選擇器509形成之波長分辨波導之光學效能。在此組態中,若例如使用光子晶體來實施波長選擇器509,則孔徑限制器件513可用於防止離開波長選擇器509之寬角度輻射到達偵測器陣列511。 以舉例方式而非以限定方式,一薄層帶孔黑玻璃可用作孔徑限制器件513。以舉例方式,孔之直徑與其深度之縱橫比可大約為1:10(例如,具有延伸穿過玻璃層之20微米直徑孔之一200微米厚玻璃層)。為了使偵測器陣列511充分偵測光學輻射515,孔徑限制器件之表面上孔之面積可大約為總面積之50%或以上。孔徑限制器件513可視情況製作為感測器陣列511之一組成部分。孔徑限制器件513可視情況製作為感測器陣列511之一組成部分。 針對較短波長,可將一光學轉換材料512間置於偵測器陣列511與孔徑限制器件513之間以幫助獲得更高轉換效率。以舉例方式而非以限定方式,該材料可係一磷光體、發光體或者一發冷光材料或螢光材料,其目的在於幫助將可用短波長能量之一部分全部或部分地轉換為可由偵測器陣列511偵測到之較長波長。 低輪廓波長選擇性偵測系統510可經組態以確定所傳輸光學輻射515之光譜發射特性。特定而言,低輪廓波長選擇性偵測系統510可經組態以分辨對應於所捕獲光學輻射515內之一或多種所關注化學物質之一或多個發射頻帶。波長選擇性偵測系統510位於由蓋503及基板501形成之殼體內。藉由蓋503遮蔽波長選擇性偵測系統510以免受可損害對所捕獲光學輻射515之光譜發射特性之確定之任何電磁(EM)雜訊。亦遮蔽波長選擇性偵測系統510以免受可干擾量測電子裝置之任何RF雜訊。應注意,若EM及RF雜訊將不實質上干擾波長選擇性偵測系統510起作用,則可省略蓋。 根據此實施例,可使用一光子晶體波長選擇器來實施低輪廓波長選擇性偵測系統510。如圖5B中所圖解說明,一光子晶體波長選擇器可包括一光子晶體圖案509(例如,規則部署之孔或空隙之一圖案)陣列,該等光子晶體圖案蝕刻至波導507之基底材料之一平坦化表面上並耦合至一對應光電二極體陣列511且如上文關於圖2A及圖2B所述的那樣表現。圖5B係實施為具有蝕刻至其底部平坦表面上之光子晶體圖案509之一平坦化光纖之一波導507之一部分之一透視圖。可例如藉由將一光纖之一側拋光而形成該平坦底部表面。另一選擇係,可藉由在波導之底部表面上形成一PMMA薄層並對該PMMA而非波導進行蝕刻而形成光子晶體圖案509。以舉例方式而非以限定方式,該PMMA層可僅係數微米厚且可使用一電子束來蝕刻。 量測電子裝置519可連接至低輪廓波長選擇性偵測系統510以便允許對由波長選擇性偵測系統510產生之電信號之分析(例如,將強度映射轉換為發射光譜)。彼等熟習此項技術者應知曉,存在適合與感測器裝置500一同使用之眾多市場上可購得控制器。以舉例方式而非以限定方式,量測電子裝置519可包含用於分析由波長選擇性偵測系統510產生之電信號之電子器件,諸如微處理器。此外,量測電子裝置519可包含用於儲存資料及指令之電腦可讀記憶體。更進一步,量測電子裝置519可經組態以使用諸如無線通信之方法將資料及指令傳輸至一第二位置。 儘管本文已闡述其中感測器裝置使用經定大小及形狀以對應於一工件(諸如一半導體晶圓或平板基板)之一基板之實例,但本發明之實施例並不限於此等實施方案。舉例而言,感測器裝置可經組態以具有實質上等於一晶片上實驗室之彼等尺寸之尺寸,以使得該裝置可實施於晶片上實驗室器件中,其可用於例如臨床診斷應用中。典型晶片上實驗室尺寸可包含至多幾平方釐米且至多幾毫米之一厚度之一區域。一晶片上實驗室之一典型橫向尺寸(長度及寬度)範圍可自約一釐米至約10釐米及其中所包含之所有範圍。一晶片上實驗室器件之一典型厚度範圍係自0.5毫米至約5毫米及其中所包含之所有範圍。獲益於前述說明及相關聯圖式所提供之教示,熟習本發明所屬於之技術者將聯想到本發明之諸多修改及其他實施例。因此,應理解,本發明不受限於所揭示之特定實施例而意欲將該等修改及其他實施例皆包含在隨附申請專利範圍之範疇內。儘管本文使用特定術語,但其使用僅具有一般及說明性意義且並非出於限制之目的。 儘管已闡述及圖解說明瞭本發明之特定實施例,但將瞭解,在不背離如隨附申請專利範圍及其合法等效物所定義之本發明之真實精神及範疇之情形下作出具體圖解說明及闡述之實施例之細節之變化。 在前述說明書中已參考特定實施例闡述了本發明。然而,熟習此項技術者應瞭解,可在不背離如下文申請專利範圍中所闡明之本發明範疇之情形下作出各種修改及改變。因此,應將本說明書及各圖視為具有說明性而非限制性意義,且所有此等修改皆意欲包含於本發明之範疇內。 上文已關於特定實施例闡述了益處、其他優點及解決問題之方案。然而,該等益處、優點、解決問題之方案及可導致任何益處、優點或解決方案發生或變得更顯著之任何要素皆不應被解釋為任何或所有請求項之關鍵、必需或基本特徵或要素。 在以下申請專利範圍中,不定冠詞「一(A)」或「一(An)」係指所述冠詞後面之項目中之一或多者之一數量,除非另外明確陳述。隨附申請專利範圍不應被解釋為包含構件-加-功能限定,除非在一既定請求項中使用措辭「用於...之構件」明確敍述此一限定。並未明確陳述「用於執行一指定功能之構件」之一請求項中之任何元件不應被解釋為一「構件」或「步驟」項,如35 USC § 112,¶ 6中所規定。特定而言,在本文之申請專利範圍中使用「...之步驟」並非意欲援引35 USC § 112,¶ 6之規定。 100‧‧‧感測器裝置 101‧‧‧基板 103‧‧‧蓋 105‧‧‧光學元件 109‧‧‧波長選擇器/光學波長選擇器 110‧‧‧低輪廓波長選擇性偵測系統/波長選擇性偵測系統 110'‧‧‧替代低輪廓波長選擇性偵測系統 111‧‧‧偵測器陣列/光電偵測器陣列 112‧‧‧光學轉換材料 113‧‧‧孔徑限制器件/孔徑限制光學器件 113'‧‧‧額外孔徑限制器件 115‧‧‧光學輻射/輻射 117‧‧‧電漿 119‧‧‧量測電子裝置 200‧‧‧感測器裝置 201‧‧‧基板 203‧‧‧蓋 205‧‧‧光學元件/窗 207‧‧‧波導/光學波導 209‧‧‧波長選擇器/光學波長選擇器210‧‧‧低輪廓波長選擇性偵測系統/波長選擇性偵測系統 211‧‧‧偵測器陣列/光電二極體陣列/感測器陣列 212‧‧‧光學轉換材料 213‧‧‧孔徑限制器件/光學傳輸孔徑限制器件 215‧‧‧光學輻射/光 217‧‧‧電漿 219‧‧‧量測電子裝置 300‧‧‧低輪廓光子晶體波長選擇性偵測系統/光子晶體波長選擇性偵測系統 301‧‧‧光學輻射 303‧‧‧透明基底材料/波導基底材料/基底材料 305‧‧‧光子晶體/光子晶體圖案 307‧‧‧箭頭 400‧‧‧感測器裝置 403‧‧‧蓋 500‧‧‧感測器裝置 501‧‧‧基板 503‧‧‧蓋 505‧‧‧光學元件 507‧‧‧波導/光學波導/額外光學波導 509‧‧‧波長選擇器/光學波長選擇器/光子晶體圖案 510‧‧‧低輪廓波長選擇性偵測系統/波長選擇性偵測系統 511‧‧‧光電二極體陣列/感測器陣列/偵測器陣列 512‧‧‧光學轉換材料 513‧‧‧孔徑限制器件 515‧‧‧光學輻射/輻射/光 517‧‧‧電漿 519‧‧‧量測電子裝置 521‧‧‧反射塗層 圖1A係根據本發明之一實施例之一感測器裝置之一剖面示意圖。 圖1B係可用於圖1A之感測器裝置中之一替代低輪廓波長選擇性偵測系統之一剖面示意圖。 圖1C係圖1A中之感測器裝置之一俯視示意圖。 圖2A係根據本發明之一替代實施例之一感測器裝置之一剖面示意圖。 圖2B係圖2A中之感測器裝置之一俯視示意圖。 圖3係圖解說明根據本發明之一實施例之一低輪廓光子晶體分光計之一個三維示意圖。 圖4係根據本發明之一替代實施例之一感測器裝置之一俯視示意圖。 圖5A係根據本發明之一替代實施例之一感測器裝置之一剖面示意圖。 圖5B係根據圖5A中所繪示之實施例之具有製作於其上之波長分辨元件之一光纖電纜之一部分的一透視圖。 圖5C係根據本發明之一替代實施例之一感測器裝置之一剖面示意圖。 100‧‧‧感測器裝置 101‧‧‧基板 103‧‧‧蓋 105‧‧‧光學元件 109‧‧‧波長選擇器/光學波長選擇器 110‧‧‧低輪廓波長選擇性偵測系統/波長選擇性偵測系統 111‧‧‧偵測器陣列/光電偵測器陣列 112‧‧‧光學轉換材料 113‧‧‧孔徑限制器件/孔徑限制光學器件 115‧‧‧光學輻射/輻射 117‧‧‧電漿 119‧‧‧量測電子裝置
权利要求:
Claims (37) [1] 一種用於量測光學輻射之特性之感測器裝置,其包括:a)一基板;b)一低輪廓光譜選擇性偵測系統,其位於該基板內一或多個空間上分離之位置處,其中該光譜選擇性偵測系統包含以光學方式耦合至一對應光學偵測器陣列之一大體層疊光學波長選擇器陣列。 [2] 如請求項1之感測器裝置,其中該光譜選擇性偵測系統位於該基板與一蓋之間。 [3] 如請求項2之感測器裝置,其中該基板與該蓋由相同材料構成。 [4] 如請求項3之感測器裝置,其中該基板及該蓋由矽構成。 [5] 如請求項2之感測器裝置,其進一步包括形成於該基板內之一光學元件,其中該光學元件以光學方式耦合至該低輪廓光譜選擇性偵測系統。 [6] 如請求項2之感測器裝置,其進一步包括形成為該蓋之部分之一光學元件,其中該光學元件以光學方式耦合至該低輪廓光譜選擇性偵測系統。 [7] 如請求項1之感測器裝置,其進一步包括位於該基板與該蓋之間的一光學波導,其中該光學波導經組態而以一光譜選擇性方式將光學輻射傳輸至該偵測器。 [8] 如請求項7之感測器裝置,其中該光學波導係一光纖或光纖束或具有形成於其上之一光子晶體結構之一透明基板,該光子晶體結構提供該大體層疊光學波長選擇器陣列。 [9] 如請求項8之感測器裝置,其進一步包括附接至一光纖之一端之一光學元件。 [10] 如請求項7之感測器裝置,其中該光學波導由石英構成。 [11] 如請求項7之感測器裝置,其中該光學波導由藍寶石構成。 [12] 如請求項7之感測器裝置,其中該光學波導係介於1微米與500微米之間厚。 [13] 如請求項7之感測器裝置,其中該光學波導係具有一平坦化側之一光纖,其中該大體層疊光學波長選擇器陣列形成於該平坦化側上。 [14] 如請求項1之感測器裝置,其進一步包括一孔徑限制器件,其中該孔徑限制器件在該光學波長選擇器陣列與該光學偵測器陣列之間,或其中該光學波長選擇器陣列在該孔徑限制器件與該光學偵測器陣列之間,或其中該光學波長選擇器陣列在第一與第二孔徑限制器件之間。 [15] 如請求項14之感測器裝置,其中該孔徑限制器件係夾在該光學波長選擇器陣列與該光學偵測器陣列之間的一材料層。 [16] 如請求項15之感測器裝置,其中該材料層具有一孔陣列,其經組態以限制自該等波長選擇器傳輸至該光學偵測器陣列之光之一孔徑。 [17] 如請求項14之感測器裝置,其中該孔徑限制器件與該光學偵測器陣列整體形成。 [18] 如請求項14之感測器裝置,其進一步包括一額外孔徑限制器件,其中該波長選擇器陣列夾在該孔徑限制器件與該額外孔徑限制器件之間。 [19] 如請求項1之感測器裝置,其進一步包括以光學方式耦合至該低輪廓光譜選擇性偵測系統之一光學元件。 [20] 如請求項19之感測器裝置,其中該光學元件由石英構成。 [21] 如請求項19之感測器裝置,其中該光學元件由藍寶石構成。 [22] 如請求項19之感測器裝置,其中該光學元件係一窗。 [23] 如請求項19之感測器裝置,其中該光學元件係一反射光束導引元件。 [24] 如請求項19之感測器裝置,其中該光學元件係一光學波導。 [25] 如請求項19之感測器裝置,其中該光學元件經圖案化以提供一孔徑限制器件。 [26] 如請求項19之感測器裝置,其中該光學元件係一光學透鏡。 [27] 如請求項19之感測器裝置,其中該光學元件對於具有自約100 nm至約2微米之範圍之波長之光學輻射實質上透明。 [28] 如請求項1之感測器裝置,其中該波長選擇性偵測系統包含一光子晶體分光計,該光子晶體分光計包括經奈米製作且耦合至一對應光電二極體陣列之一光子晶體圖案陣列。 [29] 如請求項1之感測器裝置,其中該波長選擇性偵測系統包含一或多個薄膜干涉濾光片。 [30] 如請求項29之感測器裝置,其中該一或多個薄膜干涉濾光片係該光學偵測器陣列之部分。 [31] 如請求項1之感測器裝置,其中該等光學波長選擇器係一系列一或多個有色玻璃濾光片。 [32] 如請求項1之感測器裝置,其中該等光學波長選擇器係一系列一或多個微諧振器。 [33] 如請求項32之感測器裝置,其中該光學偵測器陣列與該微諧振器器件為整體。 [34] 如請求項1之感測器裝置,其中該感測器裝置係實質上圓形且該感測器裝置具有實質上等於一半導體晶圓之特性直徑之一特性直徑。 [35] 如請求項1之感測器裝置,其中該感測器裝置具有實質上等於一平板顯示器基板之特性長度及寬度尺寸之特性長度及寬度尺寸。 [36] 如請求項1之感測器裝置,其中該感測器裝置具有實質上等於用於製造一微影遮罩之一微影基板之長度及寬度尺寸之長度及寬度尺寸。 [37] 如請求項1之感測器裝置,其中該感測器裝置具有實質上等於一晶片上實驗室之彼等尺寸之尺寸。
类似技术:
公开号 | 公开日 | 专利标题 TWI604549B|2017-11-01|晶圓級分光計 US7512298B2|2009-03-31|Optical sensing methods US9678004B2|2017-06-13|Plasmonic interferometer sensor US7903240B2|2011-03-08|Optical sensing device KR101203592B1|2012-11-23|근적외선 스펙트럼 반사광 측정을 이용한 개선된 프로세스 감지 및 제어 US20090310902A1|2009-12-17|Optical Sensing Devices and Methods WO2008070437A1|2008-06-12|Optical sensing devices and methods IL223568A|2016-04-21|An infrared detector that includes a package that incorporates at least one scatter lattice CA2912304A1|2013-11-21|Structural colorimetric sensor CN102301213B|2014-05-07|包括多个发射源的光谱学装置 US9703037B2|2017-07-11|Resonator optimisation US8395768B2|2013-03-12|Scattering spectroscopy apparatus and method employing a guided mode resonance | grating WO2013112201A1|2013-08-01|Plasmonic interferometer biosensors Skinner et al.2006|Nanoimprint patterned aluminum photonic grating for refractive index measurement Kang et al.2011|Optimization of defect hole placement in resonant cavities
同族专利:
公开号 | 公开日 CN103703348B|2017-01-18| TW201732986A|2017-09-16| US20160011046A1|2016-01-14| US9964440B2|2018-05-08| WO2012173999A3|2013-07-04| CN103703348A|2014-04-02| KR20180116434A|2018-10-24| CN106595854A|2017-04-26| CN106595854B|2019-08-13| KR20140044863A|2014-04-15| KR101968065B1|2019-04-10| TWI621197B|2018-04-11| TWI604549B|2017-11-01| US20120318966A1|2012-12-20| WO2012173999A2|2012-12-20| US9140604B2|2015-09-22| KR101909319B1|2018-12-19| EP2721381A2|2014-04-23| EP2721381A4|2015-04-22|
引用文献:
公开号 | 申请日 | 公开日 | 申请人 | 专利标题 US4432644A|1981-04-16|1984-02-21|Baird Corporation|Spectrometer| US5162841A|1989-10-11|1992-11-10|Fuji Photo Film Co., Ltd.|Exposure controlling apparatus| JPH10122961A|1996-10-16|1998-05-15|Yokogawa Electric Corp|マイクロ分光分析器| US6119031A|1996-11-21|2000-09-12|Boston Scientific Corporation|Miniature spectrometer| US6031653A|1997-08-28|2000-02-29|California Institute Of Technology|Low-cost thin-metal-film interference filters| SE0003102L|2000-09-01|2002-03-02|Imego Ab|Positionskänslig detektor| US7144133B2|2002-05-17|2006-12-05|Infocus Corporation|Transflective color recovery| US6830650B2|2002-07-12|2004-12-14|Advanced Energy Industries, Inc.|Wafer probe for measuring plasma and surface characteristics in plasma processing environments| JP2004281829A|2003-03-17|2004-10-07|Citizen Electronics Co Ltd|チップ型センサ及びその製造方法| US7338202B1|2003-07-01|2008-03-04|Research Foundation Of The University Of Central Florida|Ultra-high temperature micro-electro-mechanical systems -based sensors| JP4586404B2|2004-04-28|2010-11-24|ソニー株式会社|フィルタ装置及び送受信機| US7385704B2|2005-03-30|2008-06-10|Xerox Corporation|Two-dimensional spectral cameras and methods for capturing spectral information using two-dimensional spectral cameras| US7482576B2|2005-05-03|2009-01-27|Kla-Tencor Corporation|Apparatuses for and methods of monitoring optical radiation parameters for substrate processing operations| EP2100108A1|2006-08-02|2009-09-16|Jacobs University Bremen gGmbH|Optischer spektralsensor und ein verfahren zum herstellen eines optischen spektralsensors| CN100568721C|2007-03-29|2009-12-09|上海大学|静电致动串联式射频微滤波器| EP2110694B1|2008-04-18|2013-08-14|Sony DADC Austria AG|Method for manufacturing an optical waveguide, optical waveguide, and sensor arrangement| US8977086B2|2009-02-12|2015-03-10|Governors Of The University Of Alberta|Tapered waveguide coupler and spectrometer| WO2011046875A1|2009-10-12|2011-04-21|Nadia Pervez|Photonic crystal spectrometer| US8282882B2|2010-08-23|2012-10-09|Swapnajit Chakravarty|Photonic crystal slot waveguide miniature on-chip absorption spectrometer| US9140604B2|2011-06-17|2015-09-22|Kla-Tencor Corporation|Wafer level spectrometer|US9140604B2|2011-06-17|2015-09-22|Kla-Tencor Corporation|Wafer level spectrometer| US9360302B2|2011-12-15|2016-06-07|Kla-Tencor Corporation|Film thickness monitor| US9305753B2|2013-03-06|2016-04-05|Kla-Tencor Corporation|Thickness change monitor wafer for in situ film thickness monitoring| US9620400B2|2013-12-21|2017-04-11|Kla-Tencor Corporation|Position sensitive substrate device| US10488264B2|2014-09-11|2019-11-26|Ams Sensors Singapore Pte. Ltd.|Determining spectral emission characteristics of incident radiation| EP3324161B1|2016-11-18|2020-06-17|Espros Photonics AG|Spektrometer und verfahren zur justierung eines filterarrays| EP3794749A1|2018-05-18|2021-03-24|Telefonaktiebolaget Lm Ericsson |Optical filtering module and method| US10916411B2|2018-08-13|2021-02-09|Tokyo Electron Limited|Sensor-to-sensor matching methods for chamber matching| US11145772B2|2019-03-11|2021-10-12|At&T Intellectual Property I, L.P.|Device for photo spectroscopy having an atomic-scale bilayer|
法律状态:
优先权:
[返回顶部]
申请号 | 申请日 | 专利标题 US201161498500P| true| 2011-06-17|2011-06-17|| US13/491,442|US9140604B2|2011-06-17|2012-06-07|Wafer level spectrometer| 相关专利
Sulfonates, polymers, resist compositions and patterning process
Washing machine
Washing machine
Device for fixture finishing and tension adjusting of membrane
Structure for Equipping Band in a Plane Cathode Ray Tube
Process for preparation of 7 alpha-carboxyl 9, 11-epoxy steroids and intermediates useful therein an
国家/地区
|